A new route for isoquinolines catalyzed by palladium

Chan Sik Cho ${ }^{\text {a,* }}$, Daksha B. Patel ${ }^{\text {b }}$
${ }^{\text {a }}$ Research Institute of Industrial Technology, Kyungpook National University, Daegu 702-701, South Korea
${ }^{\mathrm{b}}$ Department of Applied Chemistry, Kyungpook National University, Daegu 702-701, South Korea
Received 5 June 2006; accepted 4 July 2006
Available online 17 August 2006

Abstract

3-Bromopyridine-4-carbaldehyde is tethered with suitably electron withdrawing group substituted alkenes via Heck coupling followed by aldol reaction in dioxane at $150^{\circ} \mathrm{C}$ under a catalytic system of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{PPh}_{3} / \mathrm{NaOAc}$ to afford the corresponding isoquinolines in good yields. © 2006 Elsevier B.V. All rights reserved.

Keywords: Alkenes; 3-Bromopyridine-4-carbaldehyde; Heck and aldol reactions; Isoquinolines; Palladium catalyst

1. Introduction

It is known that many isoquinoline containing compounds are found in naturally occurring alkaloids. Thus, besides conventional named routes such as Bischler-Napieralski, PictetSpengler [1] and Pomeranz-Fritsch syntheses [2], homogeneous palladium-catalyzed synthetic methods have also been developed as alternative methods for the construction of isoquinoline framework because of efficiency of reaction and wide availability of substrates [3-9]. As part of our continuing studies directed towards transition metal-catalyzed cyclization reactions, we recently reported on palladium-catalyzed synthesis of various carbo- and heterocycles [10-16]. Among them, in connection with this report, 2-bromobenzaldehydes [17] and β-bromovinyl aldehydes [18] were found to be aromatized with suitably functionalized alkenes in the presence of a palladium catalyst to afford naphthalenes and benzenes, respectively. This protocol led us to extend to the reaction with 3-bromopyridine-4-carbaldehyde, which is easily prepared from commercial 3-bromopyridine by the known method (Scheme 1) [19]. Herein, we describe a palladium-catalyzed annulation of 3-bromopyridine-4-carbaldehyde with functionalized alkenes leading to isoquinolines via an intrinsic Heck reaction followed by aldol reaction.

[^0]
2. Experimental

2.1. General

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (400 and 100 MHz) spectra were recorded on a Bruker Avance Digital 400 spectrometer using TMS as an internal standard. Melting points (mp) were determined on a Thomas-Hoover capillary melting point apparatus and were uncorrected. The isolation of pure products was carried out via thin layer chromatography (silica gel $60 \mathrm{GF}_{254}$, Merck). 3-Bromopyridine-4-carbaldehyde was synthesized by the treatment of 3-bromopyridine with LDA and DMF [19]. Commercially available organic and inorganic compounds were used without further purification. Alkenes $\mathbf{2 c}-\mathbf{2 e}$ [20,21], $\mathbf{2 f}$ [22], $\mathbf{2 g}$ [22], 2h [23], $\mathbf{2 i}$ [23], $\mathbf{2 j}$ [24] were prepared by the reported methods.

2.2. Typical experimental procedure for palladium-catalyzed synthesis of isoquinolines from 3-bromopyridine-4-carbaldehyde and alkenes

A mixture of 3-bromopyridine-4-carbaldehyde (0.093 g , $0.5 \mathrm{mmol})$, dimethyl itaconate $(0.079 \mathrm{~g}, 0.5 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}$ $(0.0056 \mathrm{~g}, 0.025 \mathrm{mmol}), \mathrm{PPh}_{3}(0.013 \mathrm{~g}, 0.05 \mathrm{mmol})$ and NaOAc $(0.123 \mathrm{~g}, 1.5 \mathrm{mmol})$ in dioxane $(10 \mathrm{~mL})$ was placed in a 50 mL pressure vessel. After the system was flushed with argon, the reaction mixture was allowed to react at $150^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was filtered through a short silica gel column (ethyl acetate-hexane mixture) to eliminate

inorganic salts. Removal of the solvent left a crude mixture, which was separated by thin layer chromatography (silica gel, ethyl acetate - hexane $=1 / 1$) to give dimethyl isoquinoline-6,7dicarboxylate ($0.082 \mathrm{~g}, 67 \%$). All products prepared by the above procedure were characterized spectroscopically as shown below.

Dimethyl isoquinoline-6,7-dicarboxylate (3a): solid; mp $87-88{ }^{\circ} \mathrm{C}$ (hexane-chloroform); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.98$ (s, $6 \mathrm{H}), 7.74(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}), 8.69$ $(\mathrm{d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.37(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 53.30$, $53.40,121.09,128.40,128.53,129.77,130.59,133.79,136.55$, 146.11, 153.57, 167.22, 168.13. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{4}$: C 63.67; H 4.52; N 5.71. Found: C 63.69; H 4.48; N 5.82.

Diethyl isoquinoline-6,7-dicarboxylate (3b): solid; mp $64-65{ }^{\circ} \mathrm{C}$ (hexane-chloroform); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.42$ (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.44(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.45(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H})$, $8.46(\mathrm{~s}, 1 \mathrm{H}), 8.69(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.37(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.51,14.56,62.40,62.51,121.09,128.37,128.41$, 130.17, 130.44, 134.15, 136.49, 145.99, 153.55, 166.83, 167.72. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{4}$: C 65.92; H 5.53; N 5.13. Found: C 65.72; H 5.56; N 5.01.

7-Ethyl 6-methyl isoquinoline-6,7-dicarboxylate (3c): solid; mp 93-94 ${ }^{\circ} \mathrm{C}$ (hexane-chloroform); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.35(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 4.36(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}$, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{~d}, J=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 9.33(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.57,53.40,62.52$, $121.39,128.33,128.45,130.21,130.68,134.18,136.67,145.33$, 153.19, 166.64, 168.15. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{4}$: C 64.86; H 5.05; N 5.40. Found: C 64.76; H 4.95; N 5.21.

7-Cyclohexyl 6-methyl isoquinoline-6,7-dicarboxylate (3d): oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.29-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.49(\mathrm{~m}, 2 \mathrm{H})$, $1.54-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.83(\mathrm{~m}, 2 \mathrm{H}), 2.02-2.05(\mathrm{~m}, 2 \mathrm{H}), 3.98$
$(\mathrm{s}, 3 \mathrm{H}), 5.04-5.10(\mathrm{~m}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H})$, $8.46(\mathrm{~s}, 1 \mathrm{H}), 8.69(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.38(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 24.22,25.70,31.95,53.37,75.12,121.07,123.44$, $128.36,130.45,133.90,136.43,145.93,145.96,153.56,166.20$, 168.29.

6-Methyl 7-phenyl isoquinoline-6,7-dicarboxylate (3e): solid; mp $96-97{ }^{\circ} \mathrm{C}$ (hexane-chloroform); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 3.99(\mathrm{~s}, 3 \mathrm{H}), 7.29-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.79$ (d, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 8.64(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{~d}$, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.44(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right) \delta 53.64,121.22$, $121.79,126.72,128.40,128.97,129.40,130.07,131.22,133.61$, 136.74, 146.39, 151.12, 153.69, 165.52, 167.86. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{NO}_{4}$: C 70.35; H 4.26; N 4.56. Found: C 70.05; H 4.25; N4.50.

Ethyl 7-acetylisoquinoline-6-carboxylate (3f): solid; mp $100-101{ }^{\circ} \mathrm{C}$ (hexane-chloroform); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.43$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}), 4.44(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.76(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}), 8.69(\mathrm{~d}$, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.37(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.44$, 29.71, 62.61, 121.25, 127.79, 128.66, 129.45, 132.33, 136.16, 139.53, 145.88, 153.36, 167.42, 200.89. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3}$: C 69.12; H 5.39; N 5.76. Found: C 69.06; H 5.61; N 5.41.

Ethyl 7-benzoylisoquinoline-6-carboxylate ($\mathbf{3 g}$): solid; mp $98-99{ }^{\circ} \mathrm{C}$ (hexane-chloroform); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.14$ (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.17(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.60(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.84(\mathrm{~m}, 3 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 8.56(\mathrm{~s}$, $1 \mathrm{H}), 8.72(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.36(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 14.07,62.49,121.43,128.32,129.03,129.98,130.42,132.10$, 133.77, 135.70, 137.43, 139.29, 145.52, 153.28, 166.02, 196.11. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}_{3}$: C 74.74; H 4.95; N 4.59. Found: C 74.50; H 4.96; N 4.45.

Phenyl isoquinoline-6-carboxylate (3h): solid; mp $135-136{ }^{\circ} \mathrm{C}$ (hexane-chloroform); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \quad \delta$ $7.26-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.65(\mathrm{~d}$, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.76(\mathrm{~s}, 1 \mathrm{H}), 9.38(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 121.81,122.00,126.61,127.36,128.58,130.04,130.60$, 131.35, 135.40, 144.48, 151.17, 153.01, 164.97.

Table 1
Optimization of conditions for the reaction of $\mathbf{1 a}$ with $\mathbf{2 a}$

Run	Pd catalysts	Solvents (mL)	Temperature (${ }^{\circ} \mathrm{C}$)	Time (h)	Yield ${ }^{\text {a }}$ (\%)
1	$\mathrm{Pd}(\mathrm{OAc})_{2} / 2 \mathrm{PPh}_{3}$	THF (5)	100	20	9
2	$\mathrm{Pd}(\mathrm{dba})_{2} / 2 \mathrm{PPh}_{3}$	THF (5)	100	20	4
3	$\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{dppf}$	THF (5)	100	20	8
4	$\mathrm{Pd}(\mathrm{OAc})_{2} / 2 \mathrm{PPh}_{3}$	THF (5)	125	20	16
5	$\mathrm{Pd}(\mathrm{OAc})_{2} / 2 \mathrm{PPh}_{3}$	THF (10)	150	24	59
$6^{\text {b }}$	$\mathrm{Pd}(\mathrm{OAc})_{2} / 2 \mathrm{PPh}_{3}$	THF (10)	150	24	65
7	$\mathrm{Pd}(\mathrm{OAc})_{2} / 2 \mathrm{PPh}_{3}$	Dioxane (10)	150	24	67

[^1]Cyclohexyl isoquinoline-6-carboxylate (3i): solid; mp $71-72{ }^{\circ} \mathrm{C}$ (hexane-chloroform); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.33-1.42$ $(\mathrm{m}, 1 \mathrm{H}), 1.44-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.82-1.85(\mathrm{~m}$, $2 \mathrm{H}), 1.99-2.04(\mathrm{~m}, 2 \mathrm{H}), 5.08-5.14(\mathrm{~m}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{dd}, J=1.5$ and $8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.59(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.34(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 24.11,25.80,32.03,74.30,121.78,127.24,128.21$, 129.55, 130.34, 132.77, 135.41, 144.14, 152.90, 165.71. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}$: C 75.27; H 6.71; N 5.49. Found: C 74.96; H 6.95; N 5.43.

6-(Phenylsulfonyl)isoquinoline (3j): solid; mp $179-180^{\circ} \mathrm{C}$ (hexane-chloroform); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.52-7.56(\mathrm{~m}, 2 \mathrm{H})$, $7.59-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-8.03(\mathrm{~m}, 3 \mathrm{H})$, $8.09(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $9.34(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 121.74,124.66,127.84$, 128.36, 129.77, 129.92, 129.95, 134.13, 135.28, 141.03, 143.39, 145.17, 153.00. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C} 66.89$; H 4.12; N 5.20. Found: C 66.53; H 4.33; N 5.05.

3. Results and discussion

Based on a similar catalytic system for the synthesis of benzenes and naphthalenes from β-bromovinyl aldehydes and 2-bromobenzaldehydes [17,18], respectively, with functionalized alkenes, the results of several attempted annulation of $\mathbf{1}$ with dimethyl itaconate (2a) are listed in Table 1. Treatment of equimolar amounts of $\mathbf{1}$ and $\mathbf{2 a}$ in THF in the presence of a catalytic amount of $\mathrm{Pd}(\mathrm{OAc})_{2}(5 \mathrm{~mol} \%)$ and $\mathrm{PPh}_{3}(10 \mathrm{~mol} \%)$ along with NaOAc at $100^{\circ} \mathrm{C}$ for 20 h afforded dimethyl isoquinoline-6,7-dicarboxylate (3a) in only 9% yield (run 1). The catalytic systems using $\mathrm{Pd}(\mathrm{dba})_{2}$ combined with PPh_{3} and $\mathrm{Pd}(\mathrm{OAc})_{2}$ combined with $1,1^{\prime}$-bis(diphenylphosphino)ferrocene (dppf) were also revealed to be as ineffective as that using $\mathrm{Pd}(\mathrm{OAc})_{2}$ combined with PPh_{3} (runs 2 and 3). The reaction temperature was critical for the effective formation of $\mathbf{3 a}$. When the reaction was carried out at $150^{\circ} \mathrm{C}$ along with dilution, the reaction rate was remarkably enhanced toward $\mathbf{3 a}$ (run 5). However, performing the reaction under the molar ratio of $[\mathbf{2 a}] /[\mathbf{1 a}]=2.0 \mathrm{did}$ not show any significant change of the yield of $\mathbf{3 a}$ under the employed conditions (run 6). As a result, the best result in terms of both yield and complete conversion of $\mathbf{1 a}$ is accomplished by the standard set of reaction conditions shown in run 7 of Table 1.

Having optimized reaction conditions, various suitably electron withdrawing group substituted alkenes (2) were subjected to react with $\mathbf{1}$ in order to investigate the reaction scope and several representative results are summarized in Table 2. With dialkyl itaconates (2a-2c), alkyl 3-butenoates, which have carboalkoxy substituents at position 3, the tethered aromatized products $(\mathbf{3 a}-\mathbf{3 c})$ were formed in the range of $67-78 \%$ yields without any identifiable side product. The reaction proceeds likewise with methyl 3-butenoate (2d) having bulky carbocyclohexyloxy group at position 3 to give the corresponding isoquinoline ($\mathbf{3 d}$) in a similar yield. Methyl 3-butenoate (2e) having carbophenoxy group at position 3 was also readily aromatized with 1 to give 6-methyl 7-phenyl isoquinoline-6,7-dicarboxylate (3e) in 52% yield. The reaction of ethyl 3-butenoates ($\mathbf{2 f}$ and $\mathbf{2 g}$), which have acyl group at position 3, with $\mathbf{1}$ also proceed to give the

Table 2
Palladium-catalyzed synthesis of isoquinolines (3)
cesmer

Reaction conditions: $\mathbf{1}(0.5 \mathrm{mmol}), \mathbf{2}(0.5 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.025 \mathrm{mmol}), \mathrm{PPh}_{3}$ $(0.05 \mathrm{mmol})$, NaOAc $(1.5 \mathrm{mmol})$, dioxane $(10 \mathrm{~mL}), 150^{\circ} \mathrm{C}, 24 \mathrm{~h}$.
corresponding isoquinolines and the product yield was not significantly changed when compared to the reaction with dialkyl itaconates. From the reactions between $\mathbf{1}$ and butenoates ($\mathbf{2 h}$ and 2i) having no substituent at position 3 , the corresponding isoquinolines ($\mathbf{3 h}$ and $\mathbf{3 i}$) were also produced in good yields. Allyl phenyl sulfone ($\mathbf{2} \mathbf{j}$) was similarly coupled and cyclized with $\mathbf{1}$ to afford 6-(phenylsulfonyl)isoquinoline ($\mathbf{3 j}$) in 70% yield.

The present reaction, consistent with the product formed, seems to proceed via a pathway shown in Scheme 2. Oxida-

Scheme 2.
tive addition of a carbon-bromide bond of $\mathbf{1}$ to palladium(0) produces an arylpalladium(II) intermediate 4 , which is followed by the insertion of an olefinic double bond of alkene (2) into a carbon-palladium bond of 4 to give an alkylpalladium species 5 . Subsequent β-hydrogen elimination of $\mathbf{5}$ produces a Heck product 6, which triggers an intramolecular aldol reaction to give isoquinoline (3).

4. Conclusion

In summary, it has been shown that 3-bromopyridine-4carbaldehyde undergoes tethering with suitably electron withdrawing group substituted alkenes via Heck coupling followed by aldol reaction in the presence of a catalytic amount of a palladium catalyst to afford isoquinolines in good yields. The present reaction provides a new route for isoquinolines and further elaborated synthetic application using this protocol is currently under investigation.

Acknowledgement

CSC gratefully acknowledges a Research Professor Grant of Kyungpook National University (2005).

References

[1] W.M. Whaley, T.R. Govindachari, in: R. Adams (Ed.), Organic Reactions, vol. 6, Wiley, New York, 1951, pp. 74-190.
[2] W.J. Gensler, in: R. Adams (Ed.), Organic Reactions, vol. 6, Wiley, New York, 1951, pp. 191-206.
[3] G. Dai, R.C. Larock, Org. Lett. 3 (2001) 4035.
[4] Q. Huang, R.C. Larock, Tetrahedron Lett. 43 (2002) 3557.
[5] K.R. Roesch, R.C. Larock, J. Org. Chem. 67 (2002) 86.
[6] Q. Huang, J.A. Hunter, R.C. Larock, J. Org. Chem. 67 (2002) 3437.
[7] G. Dai, R.C. Larock, Org. Lett. 4 (2002) 193.
[8] G. Dai, R.C. Larock, J. Org. Chem. 68 (2003) 920.
[9] Q. Huang, R.C. Larock, J. Org. Chem. 68 (2003) 980 (and references cited therein).
[10] C.S. Cho, J.W. Lee, D.Y. Lee, S.C. Shim, T.J. Kim, Chem. Commun. (1996) 2115.
[11] C.S. Cho, H.S. Shim, H.-J. Choi, T.-J. Kim, S.C. Shim, M.C. Kim, Tetrahedron Lett. 41 (2000) 3891.
[12] C.S. Cho, L.H. Jiang, S.C. Shim, Synth. Commun. 29 (1999) 2695.
[13] C.S. Cho, D.K. Lim, T.-J. Kim, S.C. Shim, J. Chem. Res. (11) (2002) 550 (and references cited therein).
[14] C.S. Cho, J. Organomet. Chem. 690 (2005) 4094.
[15] C.S. Cho, D.K. Lim, N.H. Heo, T.-J. Kim, S.C. Shim, Chem. Commun. (2004) 104.
[16] C.S. Cho, D.B. Patel, Tetrahedron 62 (2006) 6388.
[17] C.S. Cho, D.K. Lim, J.Q. Zhang, T.-J. Kim, S.C. Shim, Tetrahedron Lett. 45 (2004) 5653.
[18] C.S. Cho, D.B. Patel, S.C. Shim, Tetrahedron 61 (2005) 9490.
[19] A. Numata, Y. Kondo, T. Sakamoto, Synthesis (1999) 306.
[20] A.R. Devi, S. Rajaram, Indian J. Chem. 39 (2000) 294.
[21] These itaconates were prepared by regioselective mono-esterification of itaconic acid (Ref. [19]) and treatment of SOCl_{2} and alcohols.
[22] T.B. Ayed, H. Amri, Synth. Commun. 25 (1995) 3813.
[23] A.I. Vogel, A Textbook of Practical Organic Chemistry, 4th ed., Longman, 1978, p. 844.
[24] K.S. Kim, H.J. Hwang, C.S. Hahn, Bull. Korean Chem. Soc. 10 (1989) 482.

[^0]: * Corresponding author. Tel.: +82 53950 7318; fax: +82 539506594 .

 E-mail address: cscho@knu.ac.kr (C.S. Cho).

[^1]: Reaction conditions: $\mathbf{1}(0.5 \mathrm{mmol}), \mathbf{2 a}(0.5 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.025 \mathrm{mmol}), \mathrm{NaOAc}(1.5 \mathrm{mmol})$.
 ${ }^{\text {a }}$ Isolated yield.
 ${ }^{\mathrm{b}}[\mathbf{2 a}] /[\mathbf{1}]=2.0$.

